

The leading international partner for Explosives and Propellants

Achieving STANAG 4439 IM Shaped Charge Requirements on 155mm Shells: An Update

B. Nouguez – B. Mahé

IMEMTS, Munich October 2010

Unique Know-How, Multifaceted Range **EUREN**CO

The leading international partner for Explosives and Pro

- Scope
- Method
- Formulation phase results
- Assessment against different Shaped Charges
- Conclusions

SCOPE OF THE STUDY

Define Cast PBX formulations for IM large calibre applications (155mm)

- Meeting Shaped Charge jet and Sympathetic Reaction without shielding / packaging
- Using mature raw materials (RDX, NTO, Al, binder)
- Using batch or proprietary bicomponent process

- Establish desirable characteristics
- Measure the influence of NTO/RDX ratio against specs (ref.1)
- Finalize 2 formulations (without and with Aluminium)
- Assess them against Shaped Charge jets in 155mm shells

Former Results

ELSGT versus I-RDX content

Final Formulations

	B2267A	B2268A
Formulation	I-RDX [®] / NTO HTPB	I-RDX [®] / NTO / Al HTPB
Viscosity (Pa.s)		
at casting time	100	300
6 hours after casting	250	600
Density	1.65	1.76
Mechanical properties (tensile)		
max stress (MPa)	0.72	0.72
max strain (%)	7.2	8.6
Hardness (Shore A)	70	71
Detonation velocity (m/s)		
cylinder Ø 50 mm	7570	/
computed	7680	7440
ISGT (cards)	95	50
ELSGT (mm PMMA)	55	40
Unconfined Critical diameter (mm)	$30 < \Phi_{c} < 36$	$50 < \Phi_c$

Shaped Charge Jet Characterization

RCC Φ 112 mm

Flash X Ray - $\Delta t \approx 10 \mu s$

V².d versus Stand Off - RCC \ (112 mm

Shaped Charge Jet – Test Programme

V².d versus Stand-Off

Stand-Off (mm)	Tête 23 Φ 68 mm	AT4CS Φ 84 mm	RCC Φ 112 mm
150	300 (ref.2)		470
180		360 STANAG Level	450
280			400

Shaped Charge Jet Tests 155mm shells

Achieving STANAG 4439 IM Shaped Charge Requirements on 155mm Shells: An Update IMEMTS Munich 2010

Shaped Charge Jet Test – 155 B2267A – AT4CS (at 360 mm³/µs² : STANAG Spec)

Shaped Charge Jet Test – 155 B2267A – AT4CS (at 360 mm³/ μ s² = STANAG Spec)

- ♥ Witness screen and plate were perforated.
- $\stackrel{\text{\tiny (b)}}{\Rightarrow}$ No HE was collected
- ♦ Small fragments were collected

Detonation (Reaction Level I) = Fail

Shaped Charge Jet Test – 155 B2268A – RCC (at 400mm³/µs² > STANAG Spec)

(12500 fr/s)

Achieving STANAG 4439 IM Shaped Charge Requirements on 155mm Shells: An Update IMEMTS Munich 2010

Shaped Charge Jet Test – 155 B2268A – RCC (at 400 mm³/ μ s² > STANAG Spec)

- \clubsuit No perforation in witness screen and plate,
- \clubsuit More than 8 kg of HE have been collected ($\approx 90\%$),
- Shell body was broken in few large pieces (thrown beyond 15m)

Reaction Level IV = PASS

Shaped Charge Jet Test – 155 B2268A – RCC (at 450 mm³/ μ s² > STANAG Spec)

Achieving STANAG 4439 IM Shaped Charge Requirements on 155mm Shells: An Update IMEMTS Munich 2010

30000 fr/s

Shaped Charge Jet Test – 155 B2268A – RCC (at 450 mm³/ μ s² > STANAG Spec)

♦ 6 perforations in witness screen, slight imprint in plate
♦ More than 5,5 kg of HE have been collected (≈ 60 %),
♦ Shell body is broken in large pieces (thrown beyond 15m) <u>Reaction Level III/II (?) : PASS/FAIL (?)</u>

Summary of Test Results

Reaction Levels

V².d	B2267A	B2268A
	III	V
300	Ref.2	Ref.2
360		
(STANAG Level)	Ι	/
400	/	IV
450	/	III / II

Conclusions

- EURENCO has tailored cast PBX formulations, NTO/RDX based, which exhibit optimized IM/Performances trade-offs for large caliber applications (155mm to GP bombs).
- Low level gap test results allow B2267A and B2268A to meet EIDS criteria as well as in-house ELSGT requirements for Sympathetic Reaction in 155mm configuration.
- V²D stimuli have been varied from 300 to 450 mm³/µs² and limits have been determined for B2267A and B2268A
- B2267A passes at 300 mm³/ μ s² and fails against 360 mm³/ μ s² (STANAG spec)
- B2268A exceeds STANAG 4439 Shaped Charge jet requirement
- A specific shaped charge should be defined and extensively characterized (under MSIAC leadership ?) to provide a reliable standard for community.

References

- Ref. 1: Tailored Formulations for IM 155 Artillery Shells. B.Mahé *et alii* 2007 IMEMTS, Miami, USA.
- Ref. 2: Tailored Sensitivity Explosive Formulation. B.Nouguez and B.Mahé 2009 IMEMTS, Tucson, USA

Acknowledgements

Authors wish to thank TDA team (D.Salignon, B.Coquant and C.Bar) which performed tests in their La Ferté Saint-Aubin premises and provided helpful advices.